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Abstract

Let S denote the Strémberg wavelet in L*(R) and P, (seZ, neZu{w}), the orthogonal

projection onto the space spanned by the functions 2//2S(2"t — m), where r<s, m<n+ 1 (i.e.
Py, are partial sums for the orthonormal wavelet basis generated by S). We show that the

maximum of the norms of the extensions of the operators P, onto L* (R) is equal to 2 +
(2-V3).
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1. Introduction

The goal of this paper is to compute the exact value of the Lebesgue constant for
the Stromberg wavelet system of functions in the space L* (R). It is known since [3]
that the norm of orthogonal projection onto a space of piecewise linear functions is
always bounded in L* by 3 and in the general case this constant is optimal (see [6]).
Here, it is shown that in the particular case of partial sum subspaces for the

orthonormal Strémberg wavelet basis the lowest upper bound is equal to 2 + (2 —

\/g)z. The calculation of this result reduces essentially to finding the L*-norm of
orthogonal projection onto the subspace of continuous piecewise linear functions
with respect to the dyadic partition of the real line (i.e. for i€ Z, one has knots in 7 if
i=0 and in i/2 if i<0). It should also be noted that in [4], Ciesielski formulated a
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hypothesis that the Lebsgue constant for the Franklin system in the space C[0, 1] has
the same value.

This paper is arranged in the following manner: In this section, the necessary facts
concerning spaces of piecewise linear functions on the real line and the Stromberg
wavelet are provided. In Section 2, the theorem from which the value of the constant
follows is formulated and proved.

1.1. Notation and general facts

This section introduces the basic notation used in the paper and presents some
facts concerning piecewise linear functions on the real line. The theorems presented
here are either elementary or well known to specialists; brief proofs are provided to
make the paper self-contained.

Throughout the paper, L”(R) denotes the space I” on R with one-dimensional
Lebesgue measure and <-,-) stands for the scalar product in the Hilbert space
L*(R).

Let m = (;);., denote a partition of the real line R, i.e. (#;);., is an increasing
sequence of real numbers such that lim;, 4 #; = + 0. Define 6, = t; — t;_; and let
¥, denote the subspace of L?(R) consisting of all continuous piecewise linear
functions with knots in the points #;. Finally, let P, stand for the orthogonal
projection in L*(R) onto ;.

For a given partition =, define A;€ ¥, i€ Z, as functions satisfying the conditions
Ai(t;)) = 0;; (i, je Z). Every function f'€ &, can be expressed in the form

L@ =" f(t)Ai(). (1.1)
ieZ
Because supp A; = [t;_1, t;+1], the sum is finite for every e R. Let (A;),_., denote the
system of functions in ., biorthogonal to (A;); (i.e. (A;,A;) =0; ;). Since the
restriction of &, to any finite interval is finite-dimensional, %, is a closed subspace
of L>(R) and any linear functional on %, whose support is in a finite interval is
continuous. In particular, &;(f) := f(¢;) is a continuous linear functional on .%,, and
the existence of the system (A}),_, follows from the Riesz representation theorem.
(But see also Remark 1.2.) Expansion (1.1) of P.f has the form
Pof =Y A AD), (1.2)
ieZ

from which it follows that
H&M=wp/mmwﬁ (1.3)
ieZ R

It was first shown by Ciesielski in [3] that for any partition of the interval [0, 1], the
norm of the corresponding orthogonal projection treated as an operator in
L>(]0,1]) does not exceed 3. The same holds in the case of infinite partitions of
the real line. Moreover, let a; ; = A;(¢;). Then the bi-infinite matrix (g; ;) is
checkerboard. These two facts are expressed in the following proposition:
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Proposition 1.1. Let (a; ;) and P, be defined as above. Then

1Pl <3, (1.4a)

aij=(=1)"ar,| for i, jez (1.4b)
and

0; 0; + 0, 0

g/al._’jil +jTj+lai’] + jgl ai i1 =0;; fori,jeZ. (1.4¢c)
Moreover, if inf;cy §; >0, then

jilgiw a;,; =0, ie”. (1.4d)

Remark 1.1. In fact, one can prove (1.4d) without the assumption inf §;>0. For
example, using a method similar to the one found in [5, Sections 6.3-6.4] it can be
shown that the numbers |a; ;| decay exponentially as j— + oo and |a;;| = max;|a; j|.
However, as in this paper only partitions with interval lengths separated from zero
are used, there is no need to complicate the proof by considering a more general case.

Remark 1.2. To prove the existence of the functions (A7)._, one can also rely solely
on the facts expressed in Proposition 1.1.

Proof. Let A; ==2A,;/(;+ 8:11), so that ||Aj]|, = 1. We consider the bi-infinite
tri-diagonal system

D CALAYEG(f) = (Aify, ez,

jez
with the right side well defined for any f'e L (R). The matrix 4 of this system has
the general row

1 o 2 1 6

30;4+ 901" 3 30491
Thus, ||A4]|,, =1 and 4 is diagonally dominant, which implies it is bounded from
below in the supremum norm by

mf( Z|Az]>

J#i
This means that 4 is boundedly invertible on /% and [[47'||;<3. As A} =
Yjez A7'(i, ))A;, it now follows that
ATl <D 1471 )] <3 (1.5)

jez

This implies (1.4a). By an argument similar to the one in [2, p. 459], 4 is totally
positive and hence due to [1, Theorem 4.5], A~! is checkerboard and (1.4b) follows.
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Equalities (1.4c) follow from the equations (A}, A;> = J; ; and (1.4d) follows from
(1.5). O

Now (1.2), (1.3) and (1.4a) imply
Corollary 1.2. Every operator P, can be extended onto the whole space L* (R), where
Sfor any feL®(R) the function P,(f) is given by (1.2) and the norm ||P||., is

preserved.

From (1.4b) after a straightforward computation using the fact that A} €S, we
obtain

Corollary 1.3.
/'[R |A* |dt Z 5/+1|alj| +|Cl, J+1| (16)

]ez lai j| + la;, /+1|

The proof of the following is elementary:

Proposition 1.4. Suppose that the partition 7% = (i;);,., is a non-singular affine
transformation of the partition w, i.e. & = An + m, where e R\{0}, meR, and ) =
Aty +m. If >0 then

ai,j:%a,,j and /|/~\;‘(t)|dt:/ \Ai(t)|dt, i, jeZ (1.7a)
R R
while for 2<0
1 .
Giy=za iy and /|A;‘(z)|dt:/ S (O di, i, jeZ. (1.7b)
R R

Hence, the norm ||P,||., is not affected by non-singular affine transformations of the
partition .

1.2. The Stromberg wavelet

The following partitions of the real line are significant from the point of view of
this article:

L for i<0
TE(O?O) = (ti)ieZ? where ti = 2 ’

i forix0,
n(r,m) =2""n(0,0) +m, for r,meZ

n(r,0)=2""17, for reZ.



P. Bechler | Journal of Approximation Theory 122 (2003) 13-23 17

These partitions are ordered by inclusion. Specifically, for r<s or r = s and m<n
one has n(r,m)cn(s,n) and S () S S n(sm)- For such pairs (r,m) and (s,n) the
notation (r,m) <(s,n) will be used. The operators Py, ,, will be written as P,,.

The Stromberg wavelet (first introduced in [7]) is a function S'€ %4 1) such that
S|l =1 and S is orthogonal to Y70 It is a known fact that if S, ,(¢) =
2728(2"t —m), r,meZ, then (S, ), ,.; is an orthonormal basis in L2(R).
Moreover, (S, m),<sm<ni1 18 an orthonormal basis in the space S p(s) for seZ
and neZu{ oo }. With respect to the ordering of the subspaces (., ), the partial
sum operators for the system (S; ), .7 are

Ps,nf = Z <f7 Sr‘m>Sr,ma (18)

where the sum extends over all pairs (r,m)<(s,n) if n<oco and (r,m)<(s, o0) if
n = co. By Corollary 1.2, the operators P, , as well as the formulas (1.8) extend
onto L” (R).

2. Lebesgue constant for the Stromberg wavelet

In this section, we prove that the Lebesgue constant for the extensions of

operators P, ,, onto L”(R) is equal to 2 + (2 — \/3)2. This is stated in the theorem
below.

Theorem 2.1. The partial sum operators Py, for the system (S; m), ez satisfy

||Pr-,m m:2+(2_\/§)2 ifr,meZ, (293)

|Pr.oll, =2 if reZ. (2.9b)
Hence,

sup [|Prmll.,, =2+ (2—V3)™ (2.9¢)

(r, m)

Proof. Because the norms || P, ||, are not affected by affine transformations of the
partitions 7(r,m), it suffices to show that

1Pl =2 and [[Poill,, =2+ (2—-V3)%
These norms can be calculated using formula (1.3) and Corollary 1.3 in the case of
partitions 7 = n(—1, c0) and = = n(0, 1).
In order to simplify the formulas that appear in the remaining part of the paper,
we will always assume that o == -2 ++/3 and =2 — /3 = |o].
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Lemma 2.2. Let 2>0 and n be a partition of the real line such that ty =0, 6; = 1 for
i>0 and 6; = A for i<0. Then for i=0

12\5 i for j<0,
ai j = (ll_—i)i\/gfxi*f +V3d 7 for 0<j<i, (210
% o 3o for ji
and for i<0
a ;= %ﬁ)ﬁa—f—f + ?a-fﬂ‘ for 0=j>i, (2.100)
12+f3A it for j=0.

Proof. The method used to find the coefficients a; ; has very much in common with
the calculation in [7, Section 4] of the values of the Stromberg wavelet in the knots of
the dyadic partition of the real line.

We first consider the case i>0. Egs. (1.4¢) for j<0, 0<j<1i and j>1i give recursive
formulas, respectively, for the sequences (a; )2y, (4, j);:07 (a;;);2; of the form
aj j—1 +4a; j+a; j+1 =0, where j falls into one of the intervals indicated above.

Each of these systems has a two-parameter family of solutions (uo/ + vo™/) s where o

and o~ ! are the roots of the polynomial x> 4 4x + 1. Hence, there exist numbers
uy, vy, up, 02, U3, v3 such that

ure/ + v/ for j<0,
ai.; =} wpa! + v/ for 0<j<i, (2.11)

uzo/ + v/ for j=i,

Formulas in (2.11) must coincide for j = 0 and j = i. Moreover Egs. (1.4c) for j =0
and j =i must be satisfied. Finally (1.4d) must hold, which implies u; = v; = 0.
Together, there are six linear equations for the coefficients uy, vy, uy, v2, u3, v3. Solving
them leads to the formulas in (2.10a). (2.10b) may be obtained from (2.10a) using
Proposition 1.4. [
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dt:/ |Ng ()] dt

V347, Due to Proposition 1.4,

jao, ;> + lao, j1]°

Z Jao 1”4 lao 1 <&

2 = lao il + lao, 1]

1-p°

=2

)

because (1+ $%)/(1 — %) =2/V/3.

The calculation of ||Pg ]|, is more complicated. We now set A =1/2 and 7 =

n(0,1).

Lemma 2.3. Let A; = [, |A] (1 |dt Then for i=0

Ai=1+3 ﬁ+ ﬂ2’+ ﬁij,
_ 4 1 o \/§ il;l
A—i*1+§ﬂ —gﬁ +7ﬁ jz:(;‘lh
where
(BB 43417901+ )Y
N T Y R VE YT YA
(BB 431 1)9(1 4 PR
TR BRI

Proof. We first substitute 1 = 1/2 in (2.10a) and obtain for i>0

lai j| =

(4\/~B’>/3 J for j =0,

g (?ﬁ, n \/§ﬁj> for 0</<i,

(? B+ ﬁﬁ”) B’ for j=i.

= laojl +lao jnl

2 ®© 2
_5lth ﬁ_,:\/gwrﬂ
P>

19

»- Namely, we set 4 = 1.

(2.12a)

(2.12b)

(2.13)

(2.14a)

We have used the fact that |(v/3/3)of +v3a*| = (v/3/3)* + V3B 7¥ for any keZ.
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Similarly, for i<0,

2 <_\/T§ﬁ‘i + ﬂﬂ’) B’ for j<i,
|ai,j| = 23’(?/3’ + x/§ﬁf> for 0=j>1, (2.14b)
(4f )ﬂ/ for j=0.

This time we have used the equality | — (v/3/3)a % + /3| = —(v/3/3) 7 + V3,
which holds for any non-positive integer k.
Now, we compute A; for i>=0 using Corollary 1.6 and (2.14a):

1 2 2
A== E PR r AN VAL
2 T ag, 1| + ai |

jez
_! 3 ai | + lai il L1 Jai jI” + lai 1
2= 2 |ai ;| + lai j+1| o5 laijl+lai il

Y:

Z |a, /| + |a;, 1+1|
lai j| + |ai, 1+1|

]>l

Z;
We calculate

12, (V3/3)p “2%-204(,/3/3) ')
lzzﬁ 3/3)B) + BV (4(v3/3)8)

<0 (4(V3/3)8) + 71 (4(V3/3)B)
_14v3 ﬁ2’+ﬁ2’*2 f A+
4 3 ; ﬁj+1 - l—f—ﬁ ;ﬁ]
7\/§1+/32 i 24
“Siogl =k

The last equality is obtained by evaluating (1 + $%)/(1 — %) with f =2 — /3:
S~ PUV33)B + V3B 4+ B33 + V3

YI:EFO ((\/—/3)ﬁ’+fﬂ N+ B((V3/3)B T + V37T
_ V3 Z‘: 2’+4/3+1/9(1+/>’)ﬁ
2! = 1+/3 DB+ 1/3(1+ BB’
i—1
:§ﬁ' Dj-

Jj=0
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Z (V3/3)B' + V3B + (V3/3) + V3B ')+
2457 (V3/3)B + V3B + ((V3/3)B + V3!

2j 2j+2
(fﬁ V3R )Zﬁ + 5

i+1
= J+ﬁ/

V3 1+p i
S ) 2=y 0

To obtain the last equality we have again replaced all powers of  which do not
depend on i with the same power of 2 — v/3. Summing up we get, for i>0,

20 Lo V3O
Ai=Xi+Yi+Zi=1+§ﬁ+§ﬁz+Tﬁ;PJ

The formula for 4_; is obtained in a similar manner using (2.14b) or by application
of Proposition 1.4. [

It is important to note that both the numerators and the denominators in the
formulas for p; and ¢; are positive for j>0. Moreover, the following holds:

Lemma 2.4. Let p; and q; for j=0 be defined as in (2.13). Then p;<g;.

Proof. For fixed j>0 set
=(L+ B2, v=4/3, w=1/9(1+p)p,
x= (147, y=1/301+p)F
The numbers u, v, w, x, y are all positive. We have to show the inequality

u+v+w<u—v+w
xX+y = X—=y

)

which, as x — y>0 and u — v + w>0, is equivalent to

xo<y(u+w).
The verification of the last inequality is elementary. [

Note that from Lemma 2.3 we immediately get 49 =2. We now prove that
A_;=A_; for i=1. By (2.12b), this inequality is equivalent to
4 1 ) \/§ i—1 \/g
-1 T i v =YY" )
(8 1)<3 S0+HBF -+ ;q]>/ 54 (2.15)

Neglecting the negative summand in the denominator of ¢;, we see that

((1 T AR ﬁz)ﬁ”) (2.16)

qj=

o
B +1
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We now estimate every g; for j =0, ..., i — 1 using (2.16), sum up the obtained finite

geometric series and replace all fixed powers of  with the same power of 2 — /3,
arriving ﬁnally at

V3 & _ 1 Lo .

~— > ( —(1 =B +-—=(1-p). .

> Z(; g= (B 1) =5 (1= )+ g5 (1= ) (217)
Therefore, to prove (2. 15) it suffices to show that

(ﬁ71 )(ﬁ _’_7 *ﬁl+1 5ﬁ3i>

Y3 BB —4/3+41/9(1 + )8

BN VR VE O

Note again that the numerator as well as the denominator on the right are positive.

We multiply both sides by the denominator on the right, group together the terms

with g%, =1, B, B+ and ¥, explicitly evaluate the coefficients obtained for

each of the above-listed powers of by substituting f = 2 — v/3 and finally multiply

both sides of the inequality by 45v/3/2. After this rather straightforward but tedious
calculation, we arrive at the following inequality, equivalent to (2.18):

371 B =45 4+ B4 3p I (2.19)

For i =1, (2.19) does not hold. However, using (2.12b) one may directly verify that

PN L L R RV

(2.18)

When i>2,
37+ BUS3FT>49>45+ B 4+ 37 =45+ B4 371
The monotonicity of (4_;),5, is therefore established. Recall that 4o =2 and
observe that, for i>1, 4;<A_;, because
2+ 1B <Ep — 1B and by Lemma 2.4 p;<g;.
Hence, the inequality A;<A_; follows from formulas (2.12) in Lemma 2.3. Finally,
IPoall, =sup Ai = Ay =2+ (2= V3 O
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