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Abstract

Let S denote the Strömberg wavelet in L2ðRÞ and Ps;n ðsAZ; nAZ,fNgÞ; the orthogonal
projection onto the space spanned by the functions 2r=2Sð2rt � mÞ; where rps; mon þ 1 (i.e.

Ps;n are partial sums for the orthonormal wavelet basis generated by S). We show that the

maximum of the norms of the extensions of the operators Ps;n onto LNðRÞ is equal to 2þ
ð2�

ffiffiffi
3

p
Þ2:
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1. Introduction

The goal of this paper is to compute the exact value of the Lebesgue constant for
the Strömberg wavelet system of functions in the space LNðRÞ: It is known since [3]
that the norm of orthogonal projection onto a space of piecewise linear functions is
always bounded in LN by 3 and in the general case this constant is optimal (see [6]).
Here, it is shown that in the particular case of partial sum subspaces for the

orthonormal Strömberg wavelet basis the lowest upper bound is equal to 2þ ð2�ffiffiffi
3

p
Þ2: The calculation of this result reduces essentially to finding the LN-norm of

orthogonal projection onto the subspace of continuous piecewise linear functions
with respect to the dyadic partition of the real line (i.e. for iAZ; one has knots in i if
iX0 and in i=2 if io0). It should also be noted that in [4], Ciesielski formulated a
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hypothesis that the Lebsgue constant for the Franklin system in the space C½0; 1	 has
the same value.

This paper is arranged in the following manner: In this section, the necessary facts
concerning spaces of piecewise linear functions on the real line and the Strömberg
wavelet are provided. In Section 2, the theorem from which the value of the constant
follows is formulated and proved.

1.1. Notation and general facts

This section introduces the basic notation used in the paper and presents some
facts concerning piecewise linear functions on the real line. The theorems presented
here are either elementary or well known to specialists; brief proofs are provided to
make the paper self-contained.

Throughout the paper, LpðRÞ denotes the space Lp on R with one-dimensional
Lebesgue measure and /
; 
S stands for the scalar product in the Hilbert space

L2ðRÞ:
Let p ¼ ðtiÞiAZ denote a partition of the real line R; i.e. ðtiÞiAZ is an increasing

sequence of real numbers such that limi-7N ti ¼ 7N: Define di ¼ ti � ti�1 and let

Sp denote the subspace of L2ðRÞ consisting of all continuous piecewise linear
functions with knots in the points ti: Finally, let Pp stand for the orthogonal

projection in L2ðRÞ onto Sp:
For a given partition p; define LiASp; iAZ; as functions satisfying the conditions

LiðtjÞ ¼ di; j ði; jAZÞ: Every function fASp can be expressed in the form

f ðtÞ ¼
X
iAZ

f ðtiÞLiðtÞ: ð1:1Þ

Because suppLi ¼ ½ti�1; tiþ1	; the sum is finite for every tAR: Let ðL�
i ÞiAZ denote the

system of functions in Sp biorthogonal to ðLiÞi (i.e. /L�
i ;LjS ¼ di; j). Since the

restriction of Sp to any finite interval is finite-dimensional, Sp is a closed subspace

of L2ðRÞ and any linear functional on Sp whose support is in a finite interval is
continuous. In particular, xið f Þ :¼ f ðtiÞ is a continuous linear functional onSp; and
the existence of the system ðL�

i ÞiAZ follows from the Riesz representation theorem.

(But see also Remark 1.2.) Expansion (1.1) of Ppf has the form

Ppf ¼
X
iAZ

/f ;L�
i SLiðtÞ; ð1:2Þ

from which it follows that

jjPpjjN ¼ sup
iAZ

Z
R

jL�
i ðtÞj dt: ð1:3Þ

It was first shown by Ciesielski in [3] that for any partition of the interval ½0; 1	; the
norm of the corresponding orthogonal projection treated as an operator in
LNð½0; 1	Þ does not exceed 3: The same holds in the case of infinite partitions of
the real line. Moreover, let ai; j :¼ L�

i ðtjÞ: Then the bi-infinite matrix ðai; jÞ is

checkerboard. These two facts are expressed in the following proposition:
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Proposition 1.1. Let ðai; jÞ and Pp be defined as above. Then

jjPpjjNp3; ð1:4aÞ

ai; j ¼ ð�1Þiþjjai; jj for i; jAZ ð1:4bÞ

and

dj

6
ai; j�1 þ

dj þ djþ1

3
ai; j þ

djþ1

6
ai; jþ1 ¼ di; j for i; jAZ: ð1:4cÞ

Moreover, if inf iAZ di40; then

lim
j-7N

ai; j ¼ 0; iAZ: ð1:4dÞ

Remark 1.1. In fact, one can prove (1.4d) without the assumption inf di40: For
example, using a method similar to the one found in [5, Sections 6.3–6.4] it can be
shown that the numbers jai; jj decay exponentially as j-7N and jai;ij ¼ maxj jai; jj:
However, as in this paper only partitions with interval lengths separated from zero
are used, there is no need to complicate the proof by considering a more general case.

Remark 1.2. To prove the existence of the functions ðL�
i ÞiAZ one can also rely solely

on the facts expressed in Proposition 1.1.

Proof. Let %Li :¼ 2Li=ðdi þ diþ1Þ; so that jj %Lijj1 ¼ 1: We consider the bi-infinite

tri-diagonal systemX
jAZ

/ %Li;LjSxjð f Þ ¼ / %Li; fS; iAZ;

with the right side well defined for any fALNðRÞ: The matrix A of this system has
the general row

1

3

dj

dj þ djþ1
;
2

3
;
1

3

djþ1

dj þ djþ1
:

Thus, jjAjj
N

¼ 1 and A is diagonally dominant, which implies it is bounded from

below in the supremum norm by

inf
iAZ

Aði; iÞ �
X
jai

jAði; jÞj
 !

¼ 1

3
:

This means that A is boundedly invertible on cN and jjA�1jj1p3: As L�
i ¼P

jAZ A�1ði; jÞ %Lj; it now follows that

jjL�
i jj1p

X
jAZ

jA�1ði; jÞjp3: ð1:5Þ

This implies (1.4a). By an argument similar to the one in [2, p. 459], A is totally

positive and hence due to [1, Theorem 4.5], A�1 is checkerboard and (1.4b) follows.
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Equalities (1.4c) follow from the equations /L�
i ;LjS ¼ di; j and (1.4d) follows from

(1.5). &

Now (1.2), (1.3) and (1.4a) imply

Corollary 1.2. Every operator Pp can be extended onto the whole space LNðRÞ; where

for any fALNðRÞ the function Ppð f Þ is given by (1.2) and the norm jjPpjjN is

preserved.

From (1.4b) after a straightforward computation using the fact that L�
i ASp we

obtain

Corollary 1.3.Z
R

jL�
i ðtÞj dt ¼ 1

2

X
jAZ

djþ1
jai; jj2 þ jai; jþ1j2

jai; jj þ jai; jþ1j
: ð1:6Þ

The proof of the following is elementary:

Proposition 1.4. Suppose that the partition *p ¼ ðt̃iÞiAZ is a non-singular affine

transformation of the partition p; i.e. *p ¼ lpþ m; where lAR\f0g; mAR; and t̃0 ¼
lt0 þ m: If l40 then

ãi; j ¼
1

l
ai; j and

Z
R

j *L�
i ðtÞj dt ¼

Z
R

jL�
i ðtÞj dt; i; jAZ ð1:7aÞ

while for lo0

ãi; j ¼
1

l
a�i;�j and

Z
R

j *L�
i ðtÞj dt ¼

Z
R

jL�
�iðtÞj dt; i; jAZ: ð1:7bÞ

Hence, the norm jjPpjjN is not affected by non-singular affine transformations of the

partition p:

1.2. The Strömberg wavelet

The following partitions of the real line are significant from the point of view of
this article:

pð0; 0Þ :¼ðtiÞiAZ; where ti ¼
i

2
for io0;

i for iX0;

8<
:

pðr;mÞ :¼ 2�rpð0; 0Þ þ m; for r;mAZ

pðr;NÞ :¼ 2�r�1Z; for rAZ:
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These partitions are ordered by inclusion. Specifically, for ros or r ¼ s and mon

one has pðr;mÞCpðs; nÞ and Spðr;mÞCSpðs;nÞ: For such pairs ðr;mÞ and ðs; nÞ the

notation ðr;mÞoðs; nÞ will be used. The operators Ppðr;mÞ will be written as Pr;m:

The Strömberg wavelet (first introduced in [7]) is a function SASpð0;1Þ such that

jjSjj2 ¼ 1 and S is orthogonal to Spð0;0Þ: It is a known fact that if Sr; mðtÞ ¼
2r=2Sð2rt � mÞ; r;mAZ; then ðSr; mÞr; mAZ is an orthonormal basis in L2ðRÞ:
Moreover, ðSr; mÞrps;monþ1 is an orthonormal basis in the space Spðs;nÞ for sAZ

and nAZ,fNg: With respect to the ordering of the subspaces Spðr; mÞ; the partial

sum operators for the system ðSr; mÞr; mAZ are

Ps;n f ¼
X

/f ;Sr; mSSr; m; ð1:8Þ

where the sum extends over all pairs ðr;mÞpðs; nÞ if noN and ðr;mÞoðs;NÞ if
n ¼ N: By Corollary 1.2, the operators Pr; m as well as the formulas (1.8) extend

onto LNðRÞ:

2. Lebesgue constant for the Strömberg wavelet

In this section, we prove that the Lebesgue constant for the extensions of

operators Pr; m onto LNðRÞ is equal to 2þ ð2�
ffiffiffi
3

p
Þ2: This is stated in the theorem

below.

Theorem 2.1. The partial sum operators Pr; m for the system ðSr; mÞr; mAZ satisfy

jjPr; mjjN ¼ 2þ ð2�
ffiffiffi
3

p
Þ2 if r;mAZ; ð2:9aÞ

jjPr;Njj
N

¼ 2 if rAZ: ð2:9bÞ

Hence,

sup
ðr; mÞ

jjPr; mjjN ¼ 2þ ð2�
ffiffiffi
3

p
Þ2: ð2:9cÞ

Proof. Because the norms jjPr; mjjN are not affected by affine transformations of the

partitions pðr;mÞ; it suffices to show that

jjP�1;Njj
N

¼ 2 and jjP0;1jjN ¼ 2þ ð2�
ffiffiffi
3

p
Þ2:

These norms can be calculated using formula (1.3) and Corollary 1.3 in the case of
partitions p ¼ pð�1;NÞ and p ¼ pð0; 1Þ:

In order to simplify the formulas that appear in the remaining part of the paper,

we will always assume that a :¼ �2þ
ffiffiffi
3

p
and b :¼ 2�

ffiffiffi
3

p
¼ jaj:

P. Bechler / Journal of Approximation Theory 122 (2003) 13–23 17



Lemma 2.2. Let l40 and p be a partition of the real line such that t0 ¼ 0; di ¼ 1 for

i40 and di ¼ l for ip0: Then for iX0

ai; j ¼

2
ffiffiffi
3

p

1þ l
ai�j for jp0;

ð1� lÞ
ffiffiffi
3

p

1þ l
aiþj þ

ffiffiffi
3

p
ai�j for 0pjpi;

ð1� lÞ
ffiffiffi
3

p

1þ l
aiþj þ

ffiffiffi
3

p
a�iþj for jXi

8>>>>>>><
>>>>>>>:

ð2:10aÞ

and for ip0

ai; j ¼

�ð1� lÞ
ffiffiffi
3

p

lð1þ lÞ a�i�j þ
ffiffiffi
3

p

l
ai�j for jpi;

�ð1� lÞ
ffiffiffi
3

p

lð1þ lÞ a�i�j þ
ffiffiffi
3

p

l
a�iþj for 0XjXi;

2
ffiffiffi
3

p

1þ l
a�iþj for jX0:

8>>>>>>>><
>>>>>>>>:

ð2:10bÞ

Proof. The method used to find the coefficients ai; j has very much in common with

the calculation in [7, Section 4] of the values of the Strömberg wavelet in the knots of
the dyadic partition of the real line.

We first consider the case iX0: Eqs. (1.4c) for jo0; 0ojoi and j4i give recursive

formulas, respectively, for the sequences ðai; jÞNj¼0; ðai; jÞi
j¼0; ðai; jÞNj¼i of the form

ai; j�1 þ 4ai; j þ ai; jþ1 ¼ 0; where j falls into one of the intervals indicated above.

Each of these systems has a two-parameter family of solutions ðua j þ va�jÞj; where a

and a�1 are the roots of the polynomial x2 þ 4x þ 1: Hence, there exist numbers
u1; v1; u2; v2; u3; v3 such that

ai; j ¼
u1a j þ v1a�j for jp0;

u2a j þ v2a�j for 0pjpi;

u3a j þ v3a�j for jXi;

8><
>: ð2:11Þ

Formulas in (2.11) must coincide for j ¼ 0 and j ¼ i: Moreover Eqs. (1.4c) for j ¼ 0
and j ¼ i must be satisfied. Finally (1.4d) must hold, which implies u1 ¼ v3 ¼ 0:
Together, there are six linear equations for the coefficients u1; v1; u2; v2; u3; v3: Solving
them leads to the formulas in (2.10a). (2.10b) may be obtained from (2.10a) using
Proposition 1.4. &
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From the lemma we can now calculate the norm jjP�1;Njj
N
: Namely, we set l ¼ 1:

In this case, a0; j ¼
ffiffiffi
3

p
aj jj: Due to Proposition 1.4,Z

R

jN�
i ðtÞj dt ¼

Z
R

jN�
0 ðtÞj dt

¼ 1

2

XN
j¼�N

ja0; jj2 þ ja0; jþ1j2

ja0; j j þ ja0; jþ1j
¼
XN
j¼0

ja0; jj2 þ ja0; jþ1j2

ja0; j j þ ja0; jþ1j

¼
ffiffiffi
3

p 1þ b2

1þ b

XN
j¼0

b j ¼
ffiffiffi
3

p 1þ b2

1� b2

¼ 2;

because ð1þ b2Þ=ð1� b2Þ ¼ 2=
ffiffiffi
3

p
:

The calculation of jjP0;1jjN is more complicated. We now set l ¼ 1=2 and p ¼
pð0; 1Þ:

Lemma 2.3. Let Ai ¼
R
R
jL�

i ðtÞj dt: Then for iX0

Ai ¼ 1þ 2

3
bi þ 1

3
b2i þ

ffiffiffi
3

p

2
bi
Xi�1

j¼0

pj; ð2:12aÞ

A�i ¼ 1þ 4

3
bi � 1

3
b2i þ

ffiffiffi
3

p

2
bi
Xi�1

j¼0

qj; ð2:12bÞ

where

pj ¼
ð1þ b�2Þb�2j þ 4=3þ 1=9ð1þ b2Þb2j

ð1þ b�1Þb�j þ 1=3ð1þ bÞb j
;

qj ¼
ð1þ b�2Þb�2j � 4=3þ 1=9ð1þ b2Þb2j

ð1þ b�1Þb�j � 1=3ð1þ bÞb j
: ð2:13Þ

Proof. We first substitute l ¼ 1=2 in (2.10a) and obtain for iX0

jai; j j ¼

4
ffiffiffi
3

p

3
bi

 !
b�j for jX0;

bi

ffiffiffi
3

p

3
b j þ

ffiffiffi
3

p
b�j

 !
for 0pjpi;

ffiffiffi
3

p

3
bi þ

ffiffiffi
3

p
b�i

 !
b j for jXi:

8>>>>>>>>>><
>>>>>>>>>>:

ð2:14aÞ

We have used the fact that jð
ffiffiffi
3

p
=3Þak þ

ffiffiffi
3

p
a�kj ¼ ð

ffiffiffi
3

p
=3Þbk þ

ffiffiffi
3

p
b�k for any kAZ:
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Similarly, for ip0;

jai; j j ¼

2 �
ffiffiffi
3

p

3
b�i þ

ffiffiffi
3

p
bi

 !
b j for jpi;

2b�i �
ffiffiffi
3

p

3
b�j þ

ffiffiffi
3

p
b j

 !
for 0XjXi;

4
ffiffiffi
3

p

3
b�i

 !
b j for jX0:

8>>>>>>>>>><
>>>>>>>>>>:

ð2:14bÞ

This time we have used the equality j � ð
ffiffiffi
3

p
=3Þa�k þ

ffiffiffi
3

p
akj ¼ �ð

ffiffiffi
3

p
=3Þb�k þ

ffiffiffi
3

p
bk;

which holds for any non-positive integer k:
Now, we compute Ai for iX0 using Corollary 1.6 and (2.14a):

Ai ¼
1

2

X
jAZ

djþ1
jai; jj2 þ jai; jþ1j2

jai; j�1j þ jai; jj

¼ 1

2

X
jo0

1

2

jai; j j2 þ jai; jþ1j2

jai; jj þ jai; jþ1j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Xi

þ 1

2

X
0pjoi

jai; jj2 þ jai; jþ1j2

jai; j j þ jai; jþ1j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Yi

þ 1

2

X
jXi

jai; jj2 þ jai; jþ1j2

jai; jj þ jai; jþ1j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Zi

:

We calculate

Xi ¼
1

2

X
jo0

1

2

b�2jð4ð
ffiffiffi
3

p
=3ÞbiÞ2 þ b�2j�2ð4ð

ffiffiffi
3

p
=3ÞbiÞ2

b�jð4ð
ffiffiffi
3

p
=3ÞbiÞ þ b�j�1ð4ð

ffiffiffi
3

p
=3ÞbiÞ

¼ 1

4

4
ffiffiffi
3

p

3
bi
X
jX0

b2j þ b2jþ2

b j þ b jþ1
¼

ffiffiffi
3

p

3
bi1þ b2

1þ b

X
jX0

b j

¼
ffiffiffi
3

p

3

1þ b2

1� b2
bi ¼ 2

3
bi:

The last equality is obtained by evaluating ð1þ b2Þ=ð1� b2Þ with b ¼ 2�
ffiffiffi
3

p
:

Yi ¼
1

2

Xi�1

j¼0

b2iðð
ffiffiffi
3

p
=3Þb j þ

ffiffiffi
3

p
b�jÞ2 þ b2iðð

ffiffiffi
3

p
=3Þb jþ1 þ

ffiffiffi
3

p
b�j�1Þ2

biðð
ffiffiffi
3

p
=3Þb j þ

ffiffiffi
3

p
b�jÞ þ biðð

ffiffiffi
3

p
=3Þb jþ1 þ

ffiffiffi
3

p
b�j�1Þ

¼
ffiffiffi
3

p

2
bi
Xi�1

j¼0

ð1þ b�2Þb�2j þ 4=3þ 1=9ð1þ b2Þb2j

ð1þ b�1Þb�j þ 1=3ð1þ bÞb j

¼
ffiffiffi
3

p

2
bi
Xi�1

j¼0

pj:
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Zi ¼
1

2

X
jXi

ðð
ffiffiffi
3

p
=3Þbi þ

ffiffiffi
3

p
b�iÞ2b2j þ ðð

ffiffiffi
3

p
=3Þbi þ

ffiffiffi
3

p
b�iÞ2b2jþ2

ðð
ffiffiffi
3

p
=3Þbi þ

ffiffiffi
3

p
b�iÞb j þ ðð

ffiffiffi
3

p
=3Þbi þ

ffiffiffi
3

p
b�iÞb jþ1

¼ 1

2

ffiffiffi
3

p

3
bi þ

ffiffiffi
3

p
b�i

 !X
jXi

b2j þ b2jþ2

b j þ b jþ1

¼
ffiffiffi
3

p

2

1

3
bi þ b�i

� �
1þ b2

1þ b

X
jX0

b j ¼ 1þ 1

3
b2i:

To obtain the last equality we have again replaced all powers of b which do not

depend on i with the same power of 2�
ffiffiffi
3

p
: Summing up we get, for iX0;

Ai ¼ Xi þ Yi þ Zi ¼ 1þ 2

3
bi þ 1

3
b2i þ

ffiffiffi
3

p

2
bi
Xi�1

j¼0

pj:

The formula for A�i is obtained in a similar manner using (2.14b) or by application
of Proposition 1.4. &

It is important to note that both the numerators and the denominators in the
formulas for pj and qj are positive for jX0: Moreover, the following holds:

Lemma 2.4. Let pj and qj for jX0 be defined as in (2.13). Then pjpqj :

Proof. For fixed jX0 set

u :¼ ð1þ b�2Þb�2j; v :¼ 4=3; w :¼ 1=9ð1þ b2Þb2j;

x :¼ ð1þ b�1Þb�j; y :¼ 1=3ð1þ bÞb j:

The numbers u; v;w; x; y are all positive. We have to show the inequality

u þ v þ w

x þ y
p

u � v þ w

x � y
;

which, as x � y40 and u � v þ w40; is equivalent to

xvpyðu þ wÞ:

The verification of the last inequality is elementary. &

Note that from Lemma 2.3 we immediately get A0 ¼ 2: We now prove that
A�iXA�i�1 for iX1: By (2.12b), this inequality is equivalent to

ðb�1 � 1Þ 4

3
� 1

3
ð1þ bÞbi þ

ffiffiffi
3

p

2

Xi�1

j¼0

qj

 !
X

ffiffiffi
3

p

2
qi: ð2:15Þ

Neglecting the negative summand in the denominator of qj; we see that

qjX
1

b�1 þ 1
ð1þ b�2Þb�j � 4

3
b j þ 1

9
ð1þ b2Þb3j

� �
: ð2:16Þ
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We now estimate every qj for j ¼ 0;y; i � 1 using (2.16), sum up the obtained finite

geometric series and replace all fixed powers of b with the same power of 2�
ffiffiffi
3

p
;

arriving finally atffiffiffi
3

p

2

Xi�1

j¼0

qjXðb�i � 1Þ � 1

3
ð1� biÞ þ 1

45
ð1� b3iÞ: ð2:17Þ

Therefore, to prove (2.15) it suffices to show that

ðb�1 � 1Þ b�i þ 1

45
� 1

3
biþ1 � 1

45
b3i

� �

X

ffiffiffi
3

p

2

ð1þ b�2Þb�2i � 4=3þ 1=9ð1þ b2Þb2i

ð1þ b�1Þb�i � 1=3ð1þ bÞbi
: ð2:18Þ

Note again that the numerator as well as the denominator on the right are positive.
We multiply both sides by the denominator on the right, group together the terms

with b�2i; b�i�1; bi; b�1þ2i and b4i; explicitly evaluate the coefficients obtained for

each of the above-listed powers of b by substituting b ¼ 2�
ffiffiffi
3

p
and finally multiply

both sides of the inequality by 45
ffiffiffi
3

p
=2: After this rather straightforward but tedious

calculation, we arrive at the following inequality, equivalent to (2.18):

3b�1�i þ b4i
X45þ bi þ 3b�1þ2i: ð2:19Þ

For i ¼ 1; (2.19) does not hold. However, using (2.12b) one may directly verify that

A�2 ¼
2150� 1156

ffiffiffi
3

p

73
oA�1 ¼ 9� 4

ffiffiffi
3

p
¼ 2þ ð2�

ffiffiffi
3

p
Þ2:

When iX2;

3b�1�i þ b4i43b�3449445þ b2 þ 3b3X45þ bi þ 3b�1þ2i:

The monotonicity of ðA�iÞiX0 is therefore established. Recall that A0 ¼ 2 and

observe that, for iX1; AipA�i; because

2
3
bi þ 1

3
b2ip4

3
bi � 1

3
b2i and by Lemma 2:4 pjpqj :

Hence, the inequality AipA�i follows from formulas (2.12) in Lemma 2.3. Finally,

jjP0;1jjN ¼ sup
iAZ

Ai ¼ A�1 ¼ 2þ ð2�
ffiffiffi
3

p
Þ2: &
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